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Abstract

We study the Hardy inequality when the singularity is placed on the boundary of a bounded domain
in R™ that satisfies both an interior and exterior ball condition at the singularity. We obtain the sharp
Hardy constant n?/4 in case the exterior ball is large enough and show the necessity of the large exterior ball
condition. We improve Hardy inequality with the best constant by adding a sharp Sobolev term. We next
produce criteria that lead to characterizing maximal potentials that improve Hardy inequality. Breaking
the criteria one produces successive improvements with sharp constants. Our approach goes through in less
regular domains, like cones. In the case of a cone, contrary to the smooth case, the Sobolev constant does
depend on the opening of the cone.

Résumé

Nous étudions I'inégalité de Hardy dans le cas ou la singularité se trouve sur la frontiere d’un domain
borné sur R™ qui satisfait a la fois une condition de boule intérieure et extérieure sur la singularité. Nous
présentons la constante explicite de Hardy n?/4 obtenue dans le cas ot1 la boule extérieure est suffisamment
large et montrons la nécessité de la condition de la boule extérieure. Nous présentons une amélioration de
I'inégalité de Hardy avec la meilleure constante en ajoutant un term explicite de Sobolev. Par la suite, nous
présentons certains criteres capables de caractériser les potentiels maximaux qui améliorent 'inégalité de
Hardy. En bafouant les criteres nous produisons des améliorations successives avec des constantes explicites.
Notre approche peut étre appliquée dans des domaines moins réguliers, comme des cones. Dans le cas d’une
cone, contrairement au cas régulier, la constante de Sobolev dépend de 1'ouverture de la cone.
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1. Introduction and main results

For n > 3 Hardy inequality states, that for any v € C2°(R™) there holds

—92\2 2
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where % is the best constant. On the other hand Sobolev inequality reads as follows
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where S, = mn(n — 2) (['(%)/T'(n)) " is the best Sobolev constant for any domain Q C R™.

There are various improved versions of either Hardy or Sobolev inequalities in the case of a bounded
domain  containing the origin see e.g [7, 24, 23, 1, 17, 3, 4, 16, 6, 5]. We mention in particular the following
sharp Hardy—Sobolev inequality from [17, 2] that combines both inequalities
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for all u € C°(Q2). Here Xy = X1 (|z|/D), with

1
t e (0,1), D :=sup|z| .

Xi(t) = ——
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A natural question is what are the analogues of Hardy and Hardy—Sobolev inequalities in case the origin
is on the boundary of 2 instead of being in the interior. As we shall see, contrary to the previous case, the
geometry of  plays an important role. In the simplest case of the half space R = {(2/,2,) : x, > 0},
Hardy inequality with best constant reads (cf. [22, 18])
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In the more general case where the domain is a cone € with its vertex at the origin the sharp Hardy inequality
reads (cf. [22])
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where ¥ = ¢ N S""1 and p;(X) is the first Dirichlet eigenvalue of the Dirichlet Laplace-Beltrami operator
on X.

If on the other hand, the origin is on the boundary of a smooth near zero domain, then, related types of
problems have been studied in [19, 20, 12, 21]. More precisely the following minimization problem has been
considered for 0 < s < 2 and n > 4,

. Jo |Vul*dx
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and it was established that the geometry of {2 around zero plays an important role. In particular if the mean
curvature at zero is negative then jus(2) < ps(R’) and there exists a minimizer for (3). In the limit case
s = 2 the infimum p2(€) is the best Hardy constant and under certain geometric assumptions on 2 has been
studied in [8, 9, 10, 11, 15].

In [14] it was realized that the geometry plays no role for the local best Hardy constant. That is, for
r > 0 small enough if we denote by B, the ball of radius r centered at the origin, then for a smooth near
zero domain {2 one has
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which in particular implies the existence of a constant A > 0 such that
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The first question we raise in this work is to find a more quantitative result that connects the local
inequality (4) to the global inequality in the half space (1). To state our first result we denote by B,(zo)
the ball of radius p centered at xo and simply by B, in case the ball is centered at the origin; we also denote
by CA the complement of a set A C R™.

Throughout this work 2 C R™, n > 2, is a bounded domain with 0 € 0 satisfying an exterior ball
condition at zero, that is there exists a ball

B,(—pen) CCQ .
We also denote

D :=sup|z|.
Q

Theorem 1. There exists a positive constant 7, depending only on n such that if the radius of the exterior

ball satisfies p > D /7, then
n? u?
/|vu\2dxz 7/ —zdz (5)
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for allw € C°(Q). If in addition Q satisfies an interior ball condition at O then the constant n?/4 is sharp.

Thus in the case of a smooth (near zero) domain €2, if the exterior ball at zero is large enough compared
to the size of Q) then the Hardy constant is n?/4. If however the (largest) exterior ball is not large enough,
at the end of Section 3 we present an Example where the Hardy constant is smaller than n?/4.

We next improve Hardy inequality by adding a Sobolev term:

Theorem 2. Let n > 3. There exist positive constants o, and C,, that depend only on n such that, if the
radius of the exterior ball satisfies p > D /o, the following holds true:
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for allw € C°(QY). Here X1 = X1(|z|/3D). If in addition Q satisfies an interior ball condition at O then
the exponent (2n — 2)/(n — 2) of X1 is sharp.

If the radius of the exterior ball is small then there exists a non negative constant A (that depends on )
so that we have

n? u? -2y, 2
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for the precise statement see Theorem 9.

Under the assumptions of Theorem 2, a simple application of Holder’s inequality yields that for any a > 2
there exists a positive constant ¢(a, §2) such that
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If ¢(cr, Q) is the best constant then this inequality cannot be further improved, see Theorem 11. On the
other hand, as we shall see, in the limiting case o = 2 the inequality is also true, that is
X2
/ |Vu|*dz > —/ d —12u2dac, ueCX(Q),
|| a |zl
and the constant 1/4 is sharp. In contrast with the case az > 2 this inequality can be further improved.
This is a particular case of a more general situation where one has a non negative potential V' that for
some A non negative and some sharp positive constant C the following inequality is true:
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In Section 5 we characterize maximal potentials, that is potentials V' such that (6) cannot be improved,
with C being the best constant for (6); such examples are the subcritical potentials, see Definition 2. The
main result of Section 5 is Theorem 11. We note that this description of maximal potentials is analogues to
the description in [23, 17] for the interior point singularity case.

In Section 6 we consider the problem of successively improving Hardy inequality by critical potentials.
Before stating our result we first define the iterated logarithms (cf. [17])

Xp41(t) = X (X1(2)), te (0,1, k=12,...

One can check that for ¢ € (0,1) the series Y=, X1 (¢)X2(¢) ... X;(t) converges (see the proof of Lemma 6.3
in [17] or the Appendix in [13]) and that it is a strictly increasing function of ¢. We denote by « the unique
x > 1 for which

le(l/n)...xm/n) = i (7)

We then have

Theorem 3. There exists g, > 0 that depends only on n such that if the radius of the exterior ball satisfies
p > D/o,, the following holds true:

2
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for all u € C(Q); here X; = X;(|z|/(3kD)). If in addition Q satisfies an interior ball condition at 0 then
the constants 1/4 are sharp at each step, that is
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We also have the Hardy-Sobolev analogue:

Theorem 4. Let n > 3. There exist positive constants o, and C, that depend only on n such that, if the
radius of the exterior ball satisfies p > D/o,, then for any m € N the following holds true:
m n=2
/|vu| dx>—/| E T+ = Z N |2 X2z +C, (/(Xl..XmH) wzdgc) ,
Q
for all u € C(Q); here X; = X;(|z|/(3kD)). If in addition Q satisfies an interior ball condition at 0 then
the exponents (2n — 2)/(n — 2) of X; are also sharp.




We then proceed to obtain a characterization for maximal potentials in the context of logarithmic im-
provements; see Theorem 15.

Analogues of these theorems hold true if the domain 2 is a cone with vertex at zero and Section 2 is
entirely devoted to this. What is interesting in this case is that the Sobolev constant depends on the cone.
As a typical result we mention here the following theorem that refers to a bounded cone %1 := % N By, the
intersection of an infinite cone € with vertex at the origin with the unit ball Bj.

Theorem 5. Let n > 3. There exists a positive constant C that depends only on ¥ such that
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for all uw € CX(%1); here X1 = X1(|x|). The exponent (2n —2)/(n — 2) of X1 is the best possible. Moreover
the best constant C' for inequality (8) satisfies the estimate

C < C,l3|n (9)

for some positive constant C,, that depends only on n. In particular the best constant C of inequality (8)
cannot be taken to be independent of 3.

Finally, a similar analysis goes through if one has potentials with multiple singularities on the boundary,
see Theorem 20 for one such result.

Our results about point singularities on the boundary, are analogous to the case of interior point singu-
larities see [17, 23, 2]. We note however that whereas in the interior singularity case the geometry of € is
irrelevant, in this work the curvature of the boundary introduces several technical difficulties even in the case
of the plain Hardy inequality (5) as already noted in several recent works see e.g. [8, 9, 10, 11, 14, 15, 20, 21].
To overcome these difficulties we produce new improved inequalities in the flat case, see Lemmas 1, 2, 3
and then we use suitable conformal transformations thus obtaining sharp inequalities under the exterior ball
assumption.

2. Distance from the vertex of a cone

In this section we consider the case of a finite cone and we obtain both homogeneous and nonhomogeneous
improvements of the Hardy inequality (2). We pay particular attention to the special case where the cone
is the half ball BE. In this case the estimates we obtain are stronger than in the case of a general cone and
play a crucial role in our subsequent analysis.

Let ¥ C S™~! be a domain in S"~! (that is a set that is open and connected in the relative topology)
with Lipschitz boundary. Let pug = pr(X) be the kth Dirichlet eigenvalue of the Laplace-Beltrami operator
on X and let ¢ be a corresponding eigenfunction that is,

{ —Agn-1¢p(w) = ppdr(w), weX,
¢k‘az =0.

We may assume that {¢;} is a complete orthonormal system in L?(3). We note that 1 is a simple eigenvalue
and we take ¢1 to be positive.
We define

€D}, G =¢nNB ={rcR"~{0}: — e,z <1}.

€ ={reR" {0} : 2]

x
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Proof of Theorem 5. Let u € C2°(%1) be given and let

u(z) = Zuk(T)%(W)
k=1

be its decomposition into the spherical harmonics of 3. We then have

up(r) = / () (w)dS(w).



Let w,_1 denote the surface measure of the unit sphere S"~!. Throughout this proof for any radial function
G (which sometimes shall be written as G(z) and sometimes as G(r)) we shall use the notation

1
/ G(z)dx :wn_l/ G(r)r"dr.
By 0

It then easily follows that
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Moreover for any bounded radial function G we have
b
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Therefore
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For the optimality of the exponent, suppose to the contrary that there exists p < (2n —2)/(n — 2) such that
2 2 n—2
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for all u € C°(%1). Considering functions u of the form u(z) = v(r)¢1(w) with v(1) = 0 we obtain that any

such v satisfies
—9\2
\Vol2de > n dx +C X?lv
2 1
By 2 B |33| B

This is a contradiction since the best exponent of X; in (10) is 2(n — 1)/(n — 2); see [17].
To prove estimate (9) we test inequality (8) with a function of the form u(z) = v(r)¢1(w). Then an easy

n—2
f”zdx> L (10)



calculation gives
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Minimizing with respect to v (see [2, Theorem B]) we conclude that
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By the normalization of ¢; and Holder inequality we conclude that
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which concludes the proof. O
In a similar fashion we obtain

Theorem 6. Let n > 3. There exists a constant C' that depends only on X such that for any m € N
2
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for all u € CX(%1); here X; = X;(|x|). Each constant 1/4 is the best possible, that is,
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The exponent (2n — 2)/(n — 2) is the best possible. Moreover the best constant C' for inequality (11) satisfies
the estimate

C < CplE)® (12)

for some positive constant Cy, that depends only on n. In particular the best constant C of inequality (11)
cannot be taken to be independent of 3.

Proof. Arguing as in the proof of Theorem 5 we arrive at
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For the optimality of the constants 1/4 we make once again the choice u(x) = v(r)$;1(w) to conclude that
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by [17, Theorem 6.1]. The optimality of the exponent in the Sobolev term follows as before from the
optimality of the corresponding exponent of the Hardy-Sobolev inequality for an interior point, [17, Theorem
Al

Finally to prove estimate (12) we once again test inequality (11) with a function of the form w(z) =
v(r)¢1(w). We then obtain
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Minimizing with respect to v (see [2, Theorem B]) and using Holder inequality we conclude that
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which concludes the proof. O




Theorem 7. Let n > 2. There holds

[@qvu'deZ((nQQ)QJFM(E))/ ||2 T+ Z/ |$|2 ...degc

for all u € CX(%61); here X; = X;(|x|). Each constant 1/4 is sharp.

Proof. This follows from Theorem 6 by letting m — +o0o0. The optimality of the constants 1/4 has been
established in Theorem 6. O

2.1. Improved Hardy inequalities in half balls

The case of half ball where ¥ = Si_l is of particular importance for our approach. In this case the

Hardy constant becomes
2

(n—2>2+n717n7
2 4’

and the Sobolev constants of Theorems 5 and 6 depend only on n. As a special case of the previous results
we have the following sharp inequalities for all functions u € C°(B}):

n2 2 2n—2 "
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In these inequalities the singularity lies on a flat part of the boundary. However if the boundary is not
flat near the singularity, then curvature plays a role. To overcome these difficulties, in the next three lemmas
we establish stronger versions of (13), (14) and (15) that will be used to prove Theorems 2, 3 and 4.

We recall (cf.(7)) that « is the unique & > 1 for which > 70, X1(1/k)... X;(1/k) = 3. We also denote
for t € (0,1),

ZXl X5(t) ... Xa( ZX2 VX3(t) ... X2(t) .

Using the identity
d

ZXu(t) = %Xl(t)...Xk—l(t)Xlz(t)

we easily obtain cf [4]

in(t) = i(n(t)2 +B(t)), te(0,1).

dt 2t
We next have.
Lemma 1. For any R > 0 there holds
2
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R R 1=1 R R

for all u € C°(Bf); here X; = X;(|z|/kR).




Proof. Let T be a C! vector field in B}, and u € C°(B},). We have

/ divT u?dx = —2/ uVu~Tda?§/ (IVul® + |T[*v?)dx
B} B Py

+
R BR
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and therefore

We shall apply this for the vector field
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divT = ——+ —
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where in the last inequality we used that n < < <, because of the choice of x, and the result follows. (Il

Lemma 2. Let n > 3. There exists a constant C,, that depends only on n such that for any R > 0 there

holds
2 2 2 2n—2
2 n u 1 =
dx > — —d. d X
/B; Vulde 2 /B; ERRaRTE /B faprz e+ Cn (/B v

for all w € C°(B}); here X1 = X1(|z|/R).

n—2

n
2
n 1L2 dm R

Proof. The result follows by taking a convex combination of (13) and (16) and discarding the logarithmic
terms that do not come with the sharp constant; see also the next lemma. O

Lemma 3. Let n > 3 and m € N. There exists a constant C, that depends only on n such that for all
R > 0 there holds

2 2 m 2
9 n U 1 U g 9
de > — —d - —X7 ... Xd
/BJV“' v 4/3; EE “4;/3; g T

R
L u? dz + C,, X1 X)o7 |ul722d ’
T e T K Kng) 2 ul=2de )

R

for all u € C=(B}); here X; = X;(|z|/kR).

Proof. This follows by taking a convex combination of (14) and (16). O
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3. Hardy inequality in bounded domains

In this section we provide the proof of Theorem 1 and use an example to establish the necessity of a
relatively large exterior ball assumption. We also analyse the Hardy constant in the case of annuli (see

Theorem 8).

We initially establish that n?/4 is an upper bound for the Hardy constant under an interior ball condition.

Lemma 4. If Q satisfies an interior ball condition at 0 then for any r > 0 we have

Vul|?dx 2
inf fsmB V| < n
w€C(QNB,.) me \Z|2dx 4

Proof. Without loss of generality we may assume that the interior ball is B,(pe, ) and satisfies B,(pe,) C

QN B, therefore it is enough to establish that

Vul?dz 2
inf fB »(pen) | | <

n
weCE(Bylpen)) [ o ppde T 4

Using a scaling argument we find that this infimum is equal to

S

Y a2 4
ueC R™) f]R" ‘Zde

Vu|*dx

which is equal to n?/4.
We shall next prove a result about annuli. We use the notation

D(xo;11,12) i ={x €R™ : r < |z — 20| <12}
or simply Z(r1,72) in case o = 0. Also, e,, shall denote the unit vector in the x,, direction.

Theorem 8. Let n > 2 and let \; denote the best constant for the Hardy inequality

2

/ [Vulde 2 Ar / ——dw,  weCE(P(p,p(1+7))).
P2(p,p(1+7)) 2(p,p(1+7)) |'Qj - pen'

There exists a constant 7, > 0 which depends only on n such that
(i) For all 0 < 7 < 7, there holds A\, = n*/4
(ii) For all 7 > 7, there holds A\, < n?/4.
Moreover )\, is strictly decreasing in (T,,+00) and im, ;o A\ = (n — 2)2/4.

Proof. Tt is enough to establish the result for p = 1, the general case then follows by scaling. To prove (i)
it is enough to establish that for small enough 7 > 0 we have inequality (17). We apply (15) with R = 2

where we place the singularity at e,, and we obtain the inequality

/ Vul2d >”2/ v +1/ Y X2y ue (B
u X — —=axr — E——— X u
By T4 g o= A g e —e P o

where X7 = X (Jx — en|/2). Next we apply the Kelvin transform

T

u(x) =[y"Po(y), y= E

Then by standard calculations using the conformality of the Kelvin transform we have
[ vu@Pde= [ [ve)y,
B1 CBl

11

(18)



and since
|y - enl

|yl

|z —en] =

inequality (18) takes the equivalent form

n? v? 1 X3
[Vu2dy > / e dy + — / T ——vdy (19)
/CBl 4 Jep, WPy — el 4 Jo, TPy — enl?

for all v € C°(CBy), where X1 = X1(|ly — enl/2]y])-
It follows from (19) that for any 7 > 0 and any v € C2°(By4, \ Bj) there holds

2

9 n? 1
|VU| dyZ Z 7| — |2dy+1 | 20 B}
B1+T\Bl Bl+.,-\Bl y €n B1+T\Bl y| |y €n|

To conclude the proof it suffices to show that the last term above is nonnegative for small enough 7 > 0.
For this it is enough to have the inequality

n? = n2lyl? + X3 (el 2

Xf(yQTTn)>n2(|y|2—l) , I<|yl<1l+7.
Yy

Writing |y| = 1+¢, 0 < ¢ < 7, we have that |y — e, | > ¢. Hence

x(Mgp) = ¥ ()

and therefore it is enough to have
X2(4)>n2t(t+2) O<t<r
"2t +1)/ = ’ '

Since lim; o+ X3(t)/t = +o0, the result follows.
We shall next establish that the set of all 7 > 0 for which inequality (17) holds true is bounded and
therefore we may define
Tn = sup{7 > 0 : inequality (17) holds true}.

For this we first note that for 7 > 2 we have the inclusion
B, \ By C B1+T(_€n) \Bl(—en).

and therefore )
y [VulPde _ J5.\5 |Vul?dx

- < n
f@(fen,l,leT) |x\2dz C&(Br\B2) fB \ B2 |33|2dx

f@(—en;1,1+r

in
C2(2(—en;1,1+47))
Using the radial function
-2 | (1n(r/2)7r)
sin
In(7/2)

(lnﬁ:) and in particular it is smaller than n?/4 if
2

2<r<r,

we easily see that the last infimum is equal to (%72)

T > 2evn—1,

This implies the existence of an H} minimizer (see e.g. [20], Theorem 4.2) and therefore the strict mono-
tonicity of A, for 7 > 7,,. The above computation also gives that lim,_, ;.o Ay < (n — 2)2 /4; this combined
with the standard Hardy inequality gives lim, 1o A = (n—2)%/4 thus concluding the proof of the theorem.
O

We next have

12



Proof of Theorem 1: As we shall see, the constant 7, of Theorem 1 is the same as that of Theorem 8
above. Since QN B, C Z(—pen; p, p(1 + 75,)), it follows from Theorem 8 that

n? u?
/ |Vu|?de > —/ —zdr, ue Cr(QNBy,). (20)
QNB,r, 4 Jaons,,, ||

The assumption p7, > D implies Q C B, and therefore (5) follows from (20). The sharpness of the
constant n?/4 follows directly from Lemma 4. O
It is natural to ask whether the assumption of having a large exterior ball at zero is necessary in order to
have the Hardy inequality with constant n?/4. In the following example we will see that for small exterior
balls inequality (5) fails.
Example. Given p € (0,1/2) and 6 € (0,7/2) we define the domain

dpo={x=(2',2,) € By : z, <cotf|z'| and |z — pe,| > p}.

Let © be a domain containing .27, 9 and having the same largest exterior ball at zero, namely B(pey, p).
We denote by A1(n,d) the first Dirichlet eigenvalue of the Laplace operator on the spherical cap

29 = {(xlaxn) S Snil Ty < cot 0 |x'|}

By monotonicity it follows that for § < /2 we have A1(n,0) < A\1(n,7/2) = n — 1. We shall prove that if

1 P
< N O 21
P 2(:05(9e ' (21)
then f | ‘2
Vul2d Vu|*dz 2
if Jo [Vl :j' o it e <”Z, (22)
Cge () fQ Wd-f Ceo()p,0) f&fp,e de

that is the Hardy inequality with constant n?/4 fails in Q if the exterior ball at zero is small enough.
Proof of (22). We first note that

(B1\ Bapcoso) N{(2',2) : @y, < cot @ |2'|} C 0.
Separating variables we then conclude that

1 n— T . p—
" fdp,e |Vul|?d - . f2pcos€ f(r)2r"tdr N " J, sin" 2 g’ (t)2dt
Ce(p,0) fdp . %dm T f(2pcosf)=f(1)=0 f21pc059 f(r)2rm=3dr  9(6)=g'(m)=0 f; sin™ 2 tg(t)2dt

("2) (W)z () < Z

by assumption (21).

4. Improved Hardy-Sobolev inequalities for bounded domains

In this section we shall establish improved Hardy and Hardy-Sobolev inequalities and in particular we
will provide the proof of Theorem 2. We start with the following lemma.

Lemma 5. Let n > 3. There exist o, € (0,1) and a constant C,, > 0, both depending only on n, such that
for all p >0 and all r < o,p we have

n—2

n? u? =2 o, "
/ Vul2de > - — Y _dz+C, / X7 e |
CB(p)NB(pen,r) 4 CB(p)NB(pen,r) |$ - penl CB(p)NB(pen,r)

(23)
for all w € CX(CB(p) N B(pen,r)); here X1 = X1 (|x — pen|/3r).

13



Proof. We establish (23) for p = 1, the general case will then follow by scaling. The map

S(v) = (20,1 — |v[?) (24)

v+ en|?
maps conformally R onto the unit ball B;. We note that

v — en]
S = . 25
O (25)
Composing S with the Kelvin transform K we obtain that the map
1 2
T(v) = (KS)(v) = el (20",1 — |[v]?) (26)

maps conformally R”! onto CB;. The Jacobian determinant JS(v) of S can be computed explicitly and one

finds
21’1
[v+ en |2

|JS(v)] =

The Jacobian of the Kelvin map K(y) is |y|=2" hence, using also (25), the Jacobian of T is

2n|SU| 2n on
T =|JK . 27
L) = (S0 150 = 2t = (27)
Now, simple computations give that S~' = S and therefore T-! = S™'K~! = SK. From this we find
1
T Yg)= —— (22 |22 =1
@) = e e = D
and therefore | |
x—e
T z)| = - 28
1@ = e (25)

Now let r < 1 be fixed (this will be chosen later on) and let F' € C>(T(B;})) be given. We define the
function G on B;f by

2 =N
=F T =F(TW)|——s .
Go) = FTE)ID@I = FI@) (1= )
We then have by Lemma 2,
[ v / ! / & ic X7 |G - (29)
e m nT2av )
‘ WP 1617 fp O\ [y
where X; = X1(|v\/7“). We next change variables in (29).
We have -
Gw) =272 F(T(W))|v—en|*™
and therefore
VG = 202 ([VET)Ef - 602 1 2fu - ey P FT0) V(ET () - Vo - 2"

+F ()7 V] = a7 ?).

After integration over B, and a change of variables the first term turns out to be equal to fT( BY) |VF|*dz.
Integrating the other two terms yields

/B+ (210 = e " FT@)V(F(T(0)) - Vo = e’ + F(T(0)* V|0 = e[2~"[2)dv

= [ (10 el M VE@©) Tl a4 PP a7 )

r

/+(F(T(v)))2( —div(jo = eVl = eal* ") + [V = ea[27|") v
By
= 0.

14



We thus conclude that

/ |VG\2dv:/ |VF|?dx.
Bt T(BY)

Using (27) and (28) we also find that

/ G* / AF? i
—5 Al = €T .
By [v]? 7(Bf) [T — enl?|z + en[?

The other two integrals in (29) can similarly be transformed and we conclude that (29) takes the form

2 4F? 1 4F?
/ \VF[2dz > ’L/ dx+7/ d
T(B) 4 Jrh) [T —enl?|z + enl? 160172 sty |7 — enl3/2]z + €, [/2

n—2

o[ x )
T(Br+)

where X7 = Xi(Jx — epn|/r|x + ep]). Now, it follows from (28) and some simple geometry that for any r < 1

1412 2r
77‘2) D) B(en,r),

T(B(r)={zeR" : |z —ey| <rlr+e,|} = B(men, T

therefore
T(B}) > Bf N B(en,r). (30)
We will choose a,, € (0,1) such that for all r < o,, and for all x € Bf N B(e,,,r) C T(B;}) there holds

n? 4 n 1 4 S n?
4 |z —en||lz+e |2 16r1/2 |gc—en|3/2|x—|—en|5/2 T Az —en)?’

or equivalently,

4
|z — en|!/? 2n2r1/2|m+en|5/2<1—7). (31)
|z + e, |?

Indeed, this is immediate for |x + e,| < 2. Assuming that |z + e,| > 2 we set ¢ = |z — e,|. We then have
|z + en] <t+2 and therefore (31) will follow provided
n2r 202 (4 4) (4 2)V2 < 1,

for all ¢ < r. Simple computations give that the last inequality holds true provided t < 1/(75n*r). This will
be true for all t < r and all r < o, if 0, is chosen as

Finally, the inequality |z + e,| < 3 implies X1 (|z — e,|/7]z + en]) > Xi1(|z — e,|/3r). This completes the
proof. O
Proof of Theorem 2. We shall actually prove that the constant o, in the statement of the theorem is
the same as the constant o,, in the statement of Lemma 5. Without loss of generality we may assume that
p =1, the general case then follows by scaling.

We first note that from Lemma 5 and the inclusions

QNB, CCB(—ey,1)NB, CCB(—ey,1)NBy,,.

we obtain that for all r < ¢, p there holds

n—2

n? u? moz L, =
/ |Vul*dx > T de + Cn</ X" |unzdx) ; (32)
QNB, QNB, [T QNB,

for all u € C°(Q N B,.), where X, = X (|z|/3r).
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We apply (32) for » = D (which is allowed since D < o,p) and the result follows immediately from the
inclusion Q@ C Bp. To establish the optimality of the exponent (2n — 2)/(n — 2), it is enough to show the
following

Claim. If p < (2n — 2)/(n — 2) then there is no o > 1 such that the inequality

n—2

f”zdx> (33)

n? u?
/ |Vu|*de > — T———dr +C / XP|u
BiNB,(en) 4 BiNB,(en) |z — en BiNB,(en)

with X; = X (] — en|/op) holds true for some small p > 0 and some C > 0 and all u € C°(2N B)).
Suppose to the contrary that (33) is true for all u € C2°(By N B,(ey,)). We use the conformal map S
defined by (24) to pull-back (33) to S™*(B1 N B,(e,)). We write z = Sv and define

w(v) = u(S(v))(L)nT_Q.

v+ en|?

Noting that |z — e,| = 2|v|/|v + e,| we obtain that there exists R > 0 such that the following inequality
holds true for all w € C°(B})

n—2

2 2 n
/ |Vw|*dv > n—/ %mwc / Xf|w|%dv ,
B}, 4 /gy [vPPlv+ el B},

R

or equivalently

2 21 9y, 2
L %uﬂdv—i—/ |Vw|2dv2n—/ —dv—!—C’ / XP|lw
4 Jpt [v|v + en B} 4 /B

where X7 = X1(2|v|/op|v + e,]). Now, from Lemma 1 we have the inequality

w n2 'I,U2
d<41/2/ 2d 77/ ——=dr).
/B+ de AR ( . Vwl?ds - = M x) (35)

By taking R small enough we obtain from (34) and (35) that

n—2

= dv) , (34)

n—2

2 2n "

This violates the optimality of the exponent 2(n — 1)/(n — 2) of Theorem 5, concluding the proof. O
If the radius of the exterior ball is small we then have

Theorem 9. Let n > 3. There exist positive constants \, and C, that depend only on n such that, if the
radius of the exterior ball satisfies p < D /oy, the following holds true:

n—2

>\n 2 2 2n—2 " n
Vul?de + 22 [ wlde > 2 | Lodr+Cn [ X0 julitede)
2 2 1
Q P Ja 4 Jo || Q

for allw € C(Q); here X1 = X1 (|x|/3D). If in addition Q2 satisfies an interior ball condition at O then the
constant n? /4 and the exponent (2n — 2)/(n — 2) of X1 are sharp in both inequalities.

Proof. Without loss of generality we may assume that p = 1, the general case following by scaling. We
consider a C* cutoff function ¢(r) such that ¢(r) =1 for 0 <r < ¢,,/2 and ¢(r) = 0 for r > o, and ¢(|z|)
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we have 0 < ¢ < 1, |[V¢| < C4, |Ag| < Oy for some constants depending only on n. We then compute

/ \Vu|?dx
Q

/ V() + V(1 - d)u)2de
= /|V¢u|dm+/|v 1-¢ \d;v+2/qb(1—¢)|Vu|2dx
/(2¢— DA u de

> /|V¢u|2dm+/|v (1—9¢ \dm—cn/Ude
Q
(ZSQ 2 2n—2 om n:LZ
(by 32)) = — -dz + Ch, (/ X" (\x|/3an)|¢u|mdx)
4 QN B(on) 17 QNB(on)
n—2
Q Q
n—2
>

n2 u? 2n-2 _2n_ "
T | e+ €[ %7 lal /3o lou #as)

5. ( Xﬁ(|x|/3an)\(1—¢)u|%dx) " —c;b/ﬂu?dx

n? u? 2n-2 2n 2
> I/ de—i—C’ /Xl"’2 (|z|/3D)u mdm) —c;l/u2da:,
Q Q

where for the last inequality we used the fact that D > o,,.
The sharpness of the constant n? /4 and of the exponent (2n—2)/(n—2) follow as in the proof of Theorems
1 and 2. g

5. Characterizing maximal potentials

Throughout this section we assume that ) satisfies both an interior and exterior ball condition at 0.
Without loss of generality we may assume that the exterior ball at 0 is B(—2pe,,, 2p) for some p > 0.
Our starting point is the following improved Hardy inequality contained in Theorem 9,

n? u?
)\/ugdx—i—/ \Vu|?dz > —/ Tpdr (36)
Q Q 4 Jq |zl

for all u € C°(£2). We shall be interested in the problem of improvements of (36) and whether corresponding
best constants are attained. In connection with this we make the following definition

n/2
loc

2 2
)\/u2d;v+/ Vul2dz > 1/ U—de—i—C/ Vilde, ue Ce(Q), (37)
Q Q 4 Jo || Q

The class of all admissible potentials for the domain Q) is denoted by A(S).

Definition 1. A non-negative potential V € L
such that

(Q\{0}) is called admissible if there exist A > 0 and C' > 0

For a given V € A(Q) we denote by b(A) > 0 the best constant C' of inequality (37). We next address the
question whether there exists non-negative potentials W € A()) and a positive constant C such that

2 2
)\/ wlda +/ Vul2dz > ’L/ L b()\)/ Vulds + C/ Wulde, ueC®(Q).
Q Q 4 Jo lz| Q Q
In case there does not exist such a potential W we say that the potential

n? 1

TP +o(\)V(2) ,
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is a mazimal potential. Our next goal is to characterize maximal potentials. In this direction for V' € A(Q)
and small r > 0 we define

’n2 ’U.2
)‘meBT u?dz + meBT [Vul?dz — 5 anBT de

Cr.(V)= inf v dn

ueCee ()

38
Jonn, 38)

Since C,.(V) is a non-increasing function we can define

0 T
Co(V) = lim C.(V),

which may also be equal to +o00. This definition gives the impression that C°(V') might depend on the choice

of A\. We will now establish that C°(V) is independent of X\. Let us denote at the moment the infimum in

(38) by C°(V, \) to express the dependence on . We have seen (cf. (32)) that for small 7 > 0 there exists a

positive constant C,, that depends only on n so that

n? u?

/ |Vul*de > 2da:+C'n</ Xl"_2|u"2—n2dx) ' ) u € C(QN By,).
QNB, 4 Jans, |zl QNB,

Using Holder’s inequality we conclude the existence of a positive constant ¢ independent of r, so that for
small r we have

712 u2 C

/ \Vu|?dz > Tpdr + —2/ ulda u € CF(QNB,).
QNB, 4 JonB, |z ™ JanB,

This implies

2 2 2 2
fQﬁB,,V |Vu|2dx - nT fQﬂBr &Tdm < )\fQﬂBr u?dy + fQﬁBr |Vu|2dx - nT fQﬂBr &wa

- fQﬂBr Vu2dx - fQﬁBr Vu2dx
’I’L2 'U.2

< (1+ ACTQ)IQQBT [Vul*de =5 Jonp, de.

- meBr Vu2dzx

Hence C,.(V,0) < C.(V,\) < (1+Xcr?)C,(V,0). Letting r — 0 we conclude that C°(V) is indeed independent
of the choice of A > 0.

Definition 2. We say that the potential V € A(Q) is subcritical if CO(V) = +oc.

Lemma 6. Let V' be a non-negative potential satisfying
/ V2 X1y < oo, (39)
Q

where X1 = X1(|z|/D). Then V is a subcritical potential.

Proof. Applying Theorem 2 we obtain that for » > 0 small enough we have

n—2

n2 u2 2n—2 an n
|Vul?de > — —dx + C, X" Ju|m—2dx
4 2 !
QNB, QNB, |z| QNB,

for all w € C°(Q2N B,), where X1 = X1(|z|/D). Applying Holder inequality we then easily obtain that

Vul?der — % o da -2
fQﬁBT| | 4 fQﬂBT R 1 (/ Vn/QXll—ndx) "
QNB,

fQﬂBT Vu2dx =C,

Letting r — 0+ we conclude that C°(V) = +oc. O
We shall also consider the following more general situation. Assume that V, Wp, Wy are non-negative
potentials in A(2) and assume that there exist ¢ > 0 and a radius R > 0 so that

n2

2
/ Wiuldz + / |Vu|*dz > U—de + / Wouldz + c/ Vuld (40)
QNBr QNBr 4 JonBg || QNBgr QNBgr
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for all w € C°(Q2N Bg). For 0 < r < R we define

,n2 2
Co(Wh, Wai V) = inf anBT Wiu?dz + anB,‘ |Vul*dz — T anBr ‘;‘ﬁdx - anBT Wau?da
ML BT e (B, Jonp, Vutde

and we denote
COWy, Wa; V) = HI%CT(le Wa; V).
r—

We next show that subcritical potentials do not affect the concentration level C°(V). More precisely we
have

Lemma 7. Let V,W7i, Ws be non-negative potentials in A(QY) and assume that for some R > 0 there exists
¢ > 0 such that (40) holds true. If in addition Wy, Wa are subcritical then C°(Wy, Wa; V) = CO(V).

Proof. The subcriticality of W; implies that for small r > 0 there holds
n? u?
/ |Vu|*de > — Tpdr + ¢ (W;) Wiulde , uweCX(QNB,), (41)
QNB, 4 Jaons, || QNB,

with lim,_,¢ ¢, (W;) = +00. From inequalities (40) and (41) follows that for r > 0 small enough we have

’I’L2 u2
(1 o1 )fQﬂBT |Vu|*dz — ry fQﬂBT de
cr(W3) anBT Vu2dx
77.2 'LL2
Jons. |Vul?dz — 2 fQﬂBT fEde + anBT(Wl — Wo)u?dx
- fQﬁBT Vulde
n2 u2
< (1 n 1 ) fQﬂB,,. [Vul*dz — T anB,,, de '
- cr(Wh) Jonp, Vutde

This implies that

(1= i) ) < CmLway) < (14

and the result follows by letting r — 0+.

Given u € C2°(2) we define the function w by

latpenl =g
2l F e + 2pe, %

u(z) (42)
Then w € C°(02) by our assumption that the exterior ball at zero is B(—2pe,, 2p). After some computations

and using integration by parts we arrive at

2 2
/ |VU|2d.’IJ _ / (|fE + P€n|2 — p2) |Vw|2d$ n n2p2/ (‘.’E + p6n|2 — p2) de:L.
Q o |z"z+ 2pen|” q |z 2|z + 2pen |2 ’

so inequality (37) is written

2 92)\2
)\/ (|x+p€n| p) wide
Q

|z["|z + 2pen|"

+

2 2
R e
o [Tl + 2oe,]" o a2z + Zpe, 72

2 2
n—2 (\z+pe,L|2—p2) wzdx—i-c/ (|$+pen|2—p2) Vw?da
— 4 o f2["P 4 2pen o |||z +2peq|"

which can also take the equivalent form

2 2

T+ en27 2 T+ €n27 2

)\/ (‘ n/) | pn) wdr  + /(| np | pn) |Vw|2dx
o |7z + 2pe,| o |7z + 2pe,|

2 2 2\2/1..2 4 2 9)2
2”—/ (lz + peal® = p*) " (|z> + pxn)wgde/ (J + penl? — p2)
Q Q

Vw?dz. (43
(&[] 1 Zpe, 772 [+ Zoe Y WA (43)
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It is clear from the above that (43) is valid for all functions w € C2°(2) and moreover, for a fixed A > 0
the best constants ¢ for inequalities (37) and (43) coincide. That common best constant shall be denoted by
b=b(\).

Denoting
o+ pea? =

)= al¥Fe + 2penl®

it then follows that (cf. (38))

2,2 2 2 2 |z +dpzn 42 2
/\meBT P wdxr + anBT ¢°|Vw|*de — % meBT Pt 2pen? O W dx

C. (V)= inf
) W, 2 (QNBr;$2) fQﬁBT Verw?de

where W, %(Q N B,; ¢?) denotes the closure of C°(2N B,.) under the norm

/ *|Vw|*dz +/ P*widz.
QNB, QNB,
We shall now see a simpler way for expressing CO(V) = lim, 4 C,.(V) in terms of the weight ¢?. For

this we define ) )
anBT @I Vw|*dx

Wy ?(QNBy;9?) anBT Voruwide

Cr(V5¢?) =
and
C'(Vi¢®) = lim Cp(V;¢%).
r—0+4
Lemma 8. Let V be a non-negative potential in A(Q). Then CO(V) = C%(V; ¢?).

Proof. For the sake of simplicity we assume that p = 1; the general case then follows by scaling. On the
one hand we have for small » > 0 that

2 2

4

cr_2/ P*w?dr < / ¢*|Vw|*dx — L / 7@ R 5 2w?dx ue€ CX(QNB,)
QnB, QNB, 4 Jang, x|z + 2en]

for some universal constant ¢ > 0, which implies the inequality

n2 2 4 n
)‘anBT ¢*w?dz + anBT ¢*|Vw|*dr — 7 anBT \z‘ﬁimizﬁm‘bzw%x < (1 n A 2) fQﬂBT ¢*|Vw|*dx

. (44)
Tor, PV ") o, PV
On the other hand, since
2
o< PP tde, ¢
|2z + 2en|* T |2
we have the inequality
2 4 "
cr*/ %q&?w?dz g/ *|Vw|?dz we CX (AN B,)
anB, 7|z + 2en] QNB,
which in turn implies
n2 z|*+4x,

Jonp, #IVwltde |2 Jon, Pw?ds + Jonp, FIVwlde = 5 fonp, Gifpepd’w’ds (45)

meBr 2Vw?dx - meBr »2Vw?dx
The result follows by combining inequalities (44) and (45) and letting r — 0+. O

One important consequence of subcriticality is the following compactness property.
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Lemma 9. Assume that the positive potential V- € A(Q) is subcritical. Then for any sequence (wy) which
is bounded in W01’2(Q; ¢?) there exists a subsequence, also denoted by (wy), and a function wg € Wol’Q(Q; ??)
so that

(1) Wy — Wy N Wol’Q(Q; ®?)
/ $*V (wp — wo)?dx — 0.
Q

Proof. Part (i) is standard. To prove (ii) we may assume without loss of generality that wy = 0. We
consider a small 7 > 0 and a smooth cut-off function ¢ such that ¢» = 1 in B, /5 and ¢ = 0 outside B,.. We
then have

/ &V [2de / 9|V () + V(1 — p)wy)Pde
Q Q

/¢2|V<wwk)|2dx+/¢2\V<<1—w>wk)|2dx+2/ *P(1 — )|V *dz
Q Q Q

+/ #*(1 — 20))wp Vo - Vwgdr — / ®*|VY|*wide
Q Q

v

/Q 92|V () [2dz + of1)

> O (Vid?) /Q SV yPuwide + o(1)

C.(V;¢?) /Q ¢2Vw,3dx +o(1),

that is 1
Votwide < 7/ 2| Vwg|?dz 4 o(1) . 46
/Q S G Jo TV . 10
The result follows by noting that the RHS of (46) can be made arbitrarily small by choosing r» > 0 small
enough. O

We can now state and prove the main result of this section.
Theorem 10. Let V € A(Q) and X > 0 be given and let b(X) be the best constant for the inequality
/ $2w2dx +/ 02| Vw|2dz > 7/ [2* + 4pn T TP 20,200 b()\)/ Veruwldr,  we W ¢?).
|z[2[x + 2pen|? o
(47)

If in addition
b(\) < C(V)

then the best constant b(\) in (47) is realized by a function wy € Wy > (Q; ¢%). In particular the best constant
b(A) is realized if the potential V is subcritical.

Proof. We denote

n2 x|? + 4pz,
4 [z?|lz + 2pen|
Then it is easily seen that
0<Q< =, zeq
|z

which implies that @ is a subcritical potential by Lemma 6. We consider a minimizing sequence (wy) for
(47) and without loss of generality we assume that

/ Qo*widr + b(/\)/ Verwidr =1, /\/ P*widzx —|—/ | Vwy|*de — 1, as k — oo. (48)
Q Q Q Q
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Since (wy) is bounded in WO1 ’Q(Q; #?), it has a subsequence, which we assume is (wy) itself, which converges
weakly to some wy € Wy 2(Q; ¢2). We define vy, = wy, — w.

We consider a small enough r > 0 so that C,.(V;¢?) > b(\) and a smooth cut-off function ¢ such that
Y =11in B, /; and ¢ = 0 outside B,.. Arguing as in the proof of Lemma 9 we have

[ evala = [ @9+ - vpuPde
> [ @IV @uPde o)
> Cu(Vi¢%) /Q $*V*vpdzr + o(1)
= C,.(V;¢2)/Q $*Vuidr +o(1) . (49)
Now, substituting wy, = vk + wo in the normalization relations (48) and using Lemma 9 we obtain
/Q #Quidz +b(3) [ Ve -+ 4 /Q 62V olde = 1+ o(1) (50)
and
A/gl¢2w§dx+/§2¢2\Vw0|2dx+/ﬂ¢2|Vvk|2dx:1+0(1). (51)
From (49) and (50) we obtain
/ ¢*| Vo |*dz > M@ —/ $*Quidr + b()\)/ V¢2w3da:) +o(1). (52)
Q b(A) o Q

Moreover using (47) for w = wg we obtain from (51) that

/ *| Vg |Pde < 1 — / H*Quidr — b(A)/ P*Vwidr + o(1). (53)

Q Q Q
From (52) and (53) we conclude that
2
(1 _GVie7) )) 1 —/ ¢2Qw§dx+b()\)/ Vorwidz ) > 0.
b(A) ) )

Since C,.(V;$?) > b(\), this implies that

/ #*Quidz + b(\) / ¢*Vwidr > 1.
Q Q
But by lower semicontinuity,
/ H*Quidx + b(\) / P*Vwidr < 1.
Q Q

Hence wq is a minimizer. O
The next theorem is an immediate consequence of Theorem 10

Theorem 11. Let V be a non-negative potential in A(Q). (a) Let X > 0 and b(X) > 0 be such that

2 2
A qu¢+/ \Vul|2dz > 1/ Lodr+b(\) | Vulde, ueCR(Q), (54)
Q Q 4 Jo |z| Q

where b(\) is the best constant. If in addition
b(A) <C(V),

then the potential n?/4|x|? + b(A)V (z) is a mazimal potential, that is inequality (54) cannot be improved by
adding a non-negative potential W in the RHS.

(b) If V is a subcritical potential then there exist A > 0 and a best constant b(X) > 0 such that (54) is true.
Moreover the potential n?/4|z|? + b(A)V (z) is a mazimal potential.
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Proof. (a) Suppose that n?/4|z|? + b(\)V () is not a maximal potential, that is there exists a non-trivial
potential W > 0 in A(2) such that

2

2
)\/uzder/ Vul2de > U—deer()\)/ Vuzd:c+/ Wulde
Q Q 4 Jo || Q Q

holds true for all u € H}(Q). Using the transformation (42) this is equivalently written as
)\/ P*wdx +/ &*|Vw|*dx > / Qo*wdx + b()\)/ P*Vwida +/ Wotwide, — we Wy (Q;¢?).
Q Q Q Q Q

Using w = wy where wy is the minimizer from Theorem 10 we conclude that [, W¢?wide < 0, which is a
contradiction.

Part (b) is an immediate consequence of part (a) since any subcritical potential V' is in A(€2) and satisfies
CoO(V) = +o0. O

6. Logarithmic improvements and maximal potentials

Throughout this section we continue to assume that 2 satisfies both an interior and exterior ball condition
at 0. We also continue to assume that the exterior ball at 0 is B(—2pe,,, 2p) for some p > 0.

In this section we will provide the proofs of Theorems 3, 4 and also study maximal potentials in the
context of logarithmic improvements of Hardy inequality.

6.1. Logarithmic improvements

To prove Theorems 3 and 4 we first establish the following lemmas:

Lemma 10. Let n > 2. There exists a positive constant o,, depending only on n such that for all p > 0 and
all ¥ < o,p we have

2 2
Vu|2dz > ”Z S R—

CB(p)NB(pen,r) ‘l‘ - pe?’b|2

o
CB(p)NB(pen,r)

15N / u? 2 2
+Y — Y X2 XZdx
4= JeB(p)nB(pen.r) |z — pen[2

(ii) If in addition n > 3 there exists a constant C,, depending only on n such that for all m € N

2 2
/ |Vu|*dz > n uizdm
CB(p)NB(pen.r) 4 Jen(pnB(pen,r) 1T — pen|
1 & 2
+= / — X7 XPdy
4 i—1 Y CB(p)NB(pen,r) |JJ - pen‘

n—2

f"zdx> . (55)

+C, / (X1 .. Xoms1) 52 |u
CB(p)NB(pen,T)

Both inequalities are valid for all u € CX(CB(p) N B(pen,r)) and in both cases X; = X;(|x — pen|/(361)).

Proof. To prove (i) it is enough to consider the case p = 1. We fix » < 1 and we apply Lemma 1. Changing
variables via T' (cf. (26)) we obtain

2 4 2
/ |Vu|*dz > n—/ 2u Sdz
T(B;) 4 Jrh) |r —enl?lz + eq

1 — qu X2, X2 1 4u?
+- / L dy + / dx (56)
4; T(BH) |z — en|?|z + en|? 8rl/2 (B |z — en|3/2|x + e,]%/2
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for all w € C°(T(B;)); here Xy, = X (|z — e,|/(kr|z + en]). As already noted (cf. (30)) we have
CB1N Bley,r) C T(B).

so integrals in (56) can be taken over CBy N B(e,, ).
Once again it is enough to find ¢,, < 1 such that for all » < ¢, and all x € CB; N B(e,,r) there holds

n? 4 4
— X7... X7
4 |z — en)?|x + en)? 42:|35—e||gc—|—e|2

4 n2 1 oo
> § X2... X2
T8 = PPl e 2~ Al —eal? | dla - enl e

or equivalently,
e e (1 ) o S )

This is immediate if |z + e,| < 2. Assuming |z + e,| > 2 we will actually establish the stronger inequality
(recalling that Y, X7 ... X7 <1/4)

2 1
e |1/2 m 1/2 5/2 _L
2= eal'/? 2 A 2o 4 e (1 o) (57)

But this is almost the same as inequality (31), the only difference being that in the place of n? we now have
(n? +1/4)/2; we omit further details.

The proof of (ii) is analogous, but we now use Lemma 3 instead of Lemma 1. Again, we may take p = 1.
We then fix 7 < 1 and changing variables via T" we obtain

2 4o 1 du? X2 ... X?
/ |Vu|*dz > n—/ 2u sdr + 72/ 4 ; s dz
T(B) 4 Jrry |7 —enl?lr + eyl 4~ JrBr) |z — en|?|7 + enl

n—2
1 42
dx + Cy, Xy Xm
+167"1/2 /T(Bj) |2 — e,]3/2|z 4 e, |?/2 T+ </T(Bj)( 1 +1)

dx) (58)
for all w € CX(T(B;})); here Xy, = Xy (|z — en|/(kr|z + en]). As in the proof of pert (i), this is also true if
the integrals are taken over CBy N B(e,,r) and u € C2°(CB1 N B(ey, )

Hence the result will follow once we establish for all x € CB;y N B(e,, r)the inequality

n2 4 + Z 4 X2 X2
4z —enlPlztenl 44 [z —enl?|z+en|? Lo

> § X2, .. X2
+16r1/2|£v —enl32|x + e, [5/2 T 4|z — ep? i Az — en]? 1 l

This is equivalent to

|xfen|1/2zr1/2|x+enl"’/2(1*|x+ ) (7 +ZX1 X7).

The argument now goes as in part (i); we omit further details. O
Proof of Theorem 3. Without loss of generality we assume that p = 1. We use part (i) of Lemma 10 for
r = 0, making a translation of (55) by —e,,. We obtain

2 2
/ |Vu|2dx2n—/ L. Z/ LS XE X,
CB(—en,1)NB(0n) 4 JeB(—en1)nB(on) |T] CB(—en,1)NB(on) 17

for all w € C°(CB(—en,1) N B(o,,)), where X; = X;(|z|/(3k0y,)). Since Q C CB(—ey, 1) N B(oy,), the result
follows. O
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Theorem 12. Let n > 2. There exists a positive constant \,, that depends only on n such that, if the radius
of the exterior ball satisfies p < D /oy, with o, as in Theorem 4, the following holds true:

A
Vu de—l——n/qu:E > / T+ — / X dx
Jvutar+ 5 [ o Z I

for all u € C(Q); here X; = X;(|z|/(3kD)). If in addition Q satisfies an interior ball condition at 0 then
the constants 1/4 are sharp at each step.

Proof. We argue as in the proof of Theorem 2. This time however we also use the global estimate
>, XE...X? < 1/4 in order to estimate uniformly the constant in front of the L? term. We omit further
details. The sharpness of the constants 1/4 has already been proved. O
Proof of Theorem 4 We argue as in the proof of Theorem 3, using now part (ii) of Lemma 10. To prove
the sharpness of the constants 1/4 and the exponent (2n —2)/(n —2) we argue as in the proof of Theorem 2;
we omit the details. ]

In case the exterior ball is small, working as in Theorem 9 we have the following

Theorem 13. Let n > 3. There exist positive constants A\, and C,, that depend only on n such that, if the
radius of the exterior ball satisfies p < D/o,,, with o, as in Theorem 4, then for any m € N the following

holds true:
A n? u? 1 & u?
Vu2dx+—n/u2d:r > —/—dw—i—f /—XQ...dex
J a5 | TP 12 Jy

+C, </Q(X1.. Xppy1) 2 i

n
n
n— 2dl' s

for all u € C(Q); here X; = X;(|z|/(3kD)). If in addition Q satisfies an interior ball condition at 0 then
the exponents (2n — 2)/(n — 2) of X; are also sharp.

6.2. Mazximal logarithmic potentials

Here we characterize maximal potentials in the context of logarithmically improved Hardy inequalities.
Our starting point in this subsection is the improved Hardy inequality contained in Theorem 4,

2
/\/u2dz+/ Vuzdxzn— — / dea: 59
0 o IVel2 42 o T 59)

Q||2

for all u € C°(Q); here X; = X;(|z|/3xD) where D > D. We shall be interested in the problem of
improvements of (59) and whether the corresponding best constants are attained.

The analysis that will follow is analogous to that of Section 5; for this reason we shall avoid the details
in cases where the arguments are quite similar.

Definition 3. A non-negative potential V & LIZ)/CZ (Q\{0}) is called m-admissible if there exist A >0, D > D
and C > 0 such that

w2
A 2dx—|—/ |Vu|*de > —/ z |2 T+ = Z \x|2X XZdx 4+ C | Valde, uweCOX(Q), (60)
Q Q Q Q

where X; = X;(|z|/3kD). The class of all m-admissible potentials for the domain Q is denoted by Ay, ().

We note that there is a big variety of m-admissible potentials. For example if V satisfies
/ VE(X1... X)) dx < 400, (61)

where X; = X;(|z|/3kD), i=1,...,m+ 1, then V is m-admissible by Theorem 4.
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For a given V € A,,,(2) we denote by b,,(\) > 0 the best constant C of inequality (60). We next address
the question whether inequality (60) with best constant b,,(\) can be further improved. That is, whether
there exists potential W € A,,(2) and a positive constant C' such that the following inequality holds true
as well

m

A 2d33—|— |Vu|2dx > — x—!—z L XEdr 4 by, (N) | Vdide +C | Wulde
Q alz |2 Qlz |2 Q Q

for u € C° (). In case there does not exist such a potential W, we say that the potential
n? 1 CLXELL X2
—_—— ——— + b, (N)V(z),

is an m—maximal potential. Our next goal is to characterize mm—maximal potentials. In this direction for
V e A, (Q) and small » > 0 we define

n2 u2 m
Con (V) = nf /\mer u?dr + fQﬁBT [Vul?dz — y meT Wdz + % D1 me \x|2X1 - XPdx
m,r w€C'®(QNB,.) anBT Vuldz )

where X; = X;(|z|/3xD) and D > D. We also define
0 T
C,, (V)= r1_1>r51+ Crr(V).
Arguing as in Section 5 we can see that C9,(V) is independent of the specific choice of A > 0 and D> D.

Definition 4. The potential V € A,,(Q) is m-subcritical if CO, = +oo0.

Lemma 11. Let V be a non-negative potential satisfying
/ Vn/2(X1 RPN Xm+1)17ndl‘ < +OO,
Q

where X; = X;(Jz|/3kD), i=1,...,m+1. Then V is an m-subcritical potential.

Proof. The proof is quite similar to the proof of Lemma 6 and makes use of Theorem 4 to establish the
inequality

’I’L2 u
fQﬂBT |Vul?dz — = me m?dx Ik er‘]BT \x|2 .. Xpdr
Jonp, Vurdz
1 o
> C—(/Q . V"/2(X1...Xm+1)1—"dm) .
n NB,
The result then follows. O

As in Section 5 we shall also consider the following more general situation. We consider non-negative
potentials V, Wy, Wy € A,,(Q) and assume that there exist ¢ > 0 and a radius R > 0 so that

2
/ Wlquer/ Vul?dz > = ey L Z/ X7 X2 de
QNBgr QNBgr 4 JonBg |33| QNB, |$|

Jr/ Woudx + c/ Vuldx (62)
QNBgr QNBgr

for all u € C°(Q2N Br). For 0 < r < R we define
Cm,r(Wla WQ; V) =

uf anBTwluzdx + anBr |Vul?de — anB \z\z — 1 2in anB |x\2 - XPdr — anBTWWzdx
C=(QNB,) meT Vu2dz

and we denote
Co (W, Wo; V) = ll%ﬂ Conr (W1, Wo3 V).

The proof of the following lemma is similar to the proof of Lemma 7 and is omitted.
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Lemma 12. Let V, W1, Wy be non-negative potentials in A, () and assume that there exist R > 0 and
¢ > 0 such that (62) holds true. If in addition Wy, Wy are subcritical then CO, (Wy, Wa; V) = C2 (V).

Let D > D be fixed. Given u € C2°(2) we define the function w by

| + penl® = p°
R = AT
=t fm(@)w (),

where X; = X;(|z|/3kD), i = 1,...,m. Then w € C°(f) by our assumption that B(—2pe,,2p) is an
exterior ball. After some computations we arrive at

2
Vul?dz / 2 1Vwl|2dx + n? 2/ qb—al
/Q| | &2 [Vl |

+ ZX x2_ nlel +2px"ZX X+72§:X X, bda
\x|2 T e g 2 N N g, 2K g

so inequality (60) is written

Omw? [ n e’ +2pz, L N
)\/ng?andx—i—/Q(b%JVdex—l—/ﬂ E 2 + (ZXl.--Xk)dw
k=1

2 x4 2pe,|?  |z]? 4 2pz,

n? |z|? + 4px w?
> — [ d V2 63
> [ rraetgthutde e [ Vit (63)

It is clear from the above that (63) is valid for all functions w € C2°(2) and moreover, for a fixed A > 0
the best constants ¢ for inequalities (60) and (63) coincide. That common best constant shall be denoted by
b = b (\).

Defining

n? |z|? +4px, n|z)? + 2pz, || -
B J N e TS - ( X X)
Qo) = e P LS s S~ P 3 ) 2 K X

it then follows that

Crn,r(V) = inf A Jang, Pmw?de + [onp OmlVwlPde = [0 5 Qmér,w’ds
' W2(QNB,:62,) Jons, 97 Vwids

where W, %(Q N B,; ¢2,) denotes the closure of C2°(Q N B,.) under the norm

/ 3n|Vw|2d:c + / fandx.
QNB,. QNB

T

Similarly to Section 5 we shall use a simpler way for expressing C2, (V) = lim, o4 Cp, (V). For this we

define f ¢2 v |2d
| Vw|“dx

Conr(V5¢2) = inf 0B T

w2 @nBie2) Jong, VoRwide

and
0 (1. 42 — 1 42
Cm(V7 (bm) - r1_1>%1+ Cm,T(V7 ¢m)
Lemma 13. Let V be a non-negative potential in A,,(2). Then C2 (V) = CL(V;¢2,).

Proof. The proof is quite similar to the proof of Lemma 8. In particular we make use of the fact that

X, n/2 n
‘/Q (m) (X1~~~Xm+1)1 < 400,

from which it easily follows that |@Q.,| is an m-subcritical potential. We omit further details. |
One important consequence of m-subcriticality is the following compactness property whose proof is
similar to that of Lemma 9 and is therefore omitted.
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Lemma 14. Assume that the positive potential V. € A,,(Q) is m-subcritical. Then for any sequence (wy)
which is bounded in W&Q(Q,gb?n) there exists a subsequence, also denoted by (wg), and a function wy €

W2 ¢2,) so that
() wy—wo in Wy (Q67,)
(i) / V$?2, (wy, — wo)*dx — 0.
Q
We can now state and prove the main theorems of this section.

Theorem 14. Let V € A, () and A > 0 be given and let by, (X) be the best constant for the inequality

)\/gﬁfnw?dx—k/ ¢%1|Vw|2dx2/Qm¢%Lw2dx+c/ V2 wide, w e W32 (Q; 62), (64)
Q Q Q Q

where ) )
o) = 1Ll — P ok
" lz|2 |z 4 2pen|2 1 T
and .
n? |x|? +4px, 1 [(n|z]*+2px, |z|2
_n L fn _ X, X )
o) = Ll i B3 b o g J (oKX

k=1

with X; = X;(|z|/3xD), D > D. If in addition
bm(N) < Cp,

then the best constant by, (\) in (64) is realized by a function wy € WJ(Q;¢2,). In particular the best
constant by, () is realized if V' is an m-subcritical potential.

Proof. The proof is similar to the proof of Theorem 10 so we shall only give a sketch of the proof. What
is important for our argument is that the potential @Q,, is a subcritical potential. We consider a minimizing
sequence (wy) for (64) and without loss of generality we assume that

/ Qumd? widr + bm(/\)/ Vo2 widr =1, )\/ ¢2 wide +/ @2 |VwgPdz — 1, as k — oo.
Q Q Q Q

Since (wy) is bounded in WO1 -2 (€2; ¢2,), it has a subsequence, which we assume is (wy) itself, which converges
weakly to some wo € Wy 2 (Q; ¢2,). We define v, = wy, — wo.

We consider a small enough r > 0 so that Cy, .(V;¢2) > b,,(\) and a smooth cut-off function % such
that ¢» =1 in B, /; and ¢ = 0 outside B,.. Arguing as in the proof of Theorem 10 we obtain

[ TPl 2 Co (Vi) [ VeRatde o) (65)
Q Q
and also

/ Qumd? wid + by, (N) / V2 wide + b, (N) / Vo2 vide =14 o(1) (66)

Q Q Q
and
/\/ ¢3nwgdx+/ ¢31|Vw0|2dx+/ 62 [V 2z = 1 + o(1), (67)
Q Q Q
From (65) and (66) we obtain
A2
/ ¢3R\Vvk|2d$ > M(l — / Qm¢fnw(2)dx+ bm(/\)/ V(b,quwgdx) +o(1).
Q bm()‘) Q Q

Writing (64) for w = wy we obtain from (67) that

/§2¢%1|Vvk\2dx <1- /Q Qumd? widr — by, (N) /Q V2 wide + o(1)
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and arguing as before we conclude that
/ Q2 wida + by (N) / V2 Vwidr =1,
Q Q

that is wg is a minimizer for (64). O
Finally, the next is a direct consequence of Theorem 14.

Theorem 15. Letn > 3. V is a non-negative potential in A,,(Q) and D > D. (a) Let A > 0 and b, (X) > 0
be the best constant for the following inequality

2 2 1 m U2
)\/ u2d:17+/ Vu|2dz > ’l/ L dr+ /—XQ...Xdeerm()\)/ Vuldr, ueC2(Q), (68)
Q Q 4 Jo |=f? 4; ol : Q )

where X; = X;(|z|/3xD). If in addition

then the potential n?/4|x|* + 1/4|z|? Y1, X? ... X} + by (N)V () is a mazimal potential, that is, inequality
(68) cannot be improved by adding a non-negative potential W in the RHS.

(b) If V is an m-subcritical potential then there exist X > 0 and a best constant by, (A\) > 0 such that (68) is
true. Moreover the potential n?/4|x|? + 1/4|z|> Y1, X7 ... X} + bm(N)V () is a mazimal potential.

7. Maximal potentials in finite cones

In the previous two sections we characterized maximal potentials in bounded domains satisfying the
exterior and interior ball condition. Analogous results also hold true in the case of finite cones.

Let %, be the cone determined by the domain ¥ C S"~! as defined in Section 2; more generally we set
%, := € N B,.. In this subsection we shall initially be interested in the question of characterizing maximal
potentials for improved versions of inequality (2).

n/2 5

Definition 5. A non-negative potential V € L,/ (€1 \ {0}) is called admissible if there exists ¢ > 0 such

that
—9\2 2
/ |Vu|*dz > <(n) + ul(E)) / U—de +c | Vuldr, ueCE(6). (69)
cgl 2 Clapl |x|

€1
We denote by A(%1) the class of all admissible potentials.

Once again there is a big variety of admissible potentials. For example if V' satisfies f‘& vri2x %_"dx <
~+o00 where X; = X;(|z|), then V is admissible by Theorem 5.
Given V € A(%)) and r € (0,1) we define

Je. \Vu|2dz — ((7122)2 + u1(2)> Je. %dz

ueC(€,) f% Vu2dx

and

0 o .
(V)= lim Co(V).

Definition 6. We say that the potential V € A(%}) is subcritical if C°(V) = +oc.

The analogue of Lemma 6 is the following

Lemma 15. Let V be a non-negative potential satisfying
/ V2 X1y < oo,
1

where X1 = X1(|z|). Then V is a subcritical potential.
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Given u € C°(%1) we define the function w by

u(@) = |27 g (w)w(z) = Y(@)w(@), (70)

where w = I%I € ¥ and ¢;(w), is the first eigenfunction of the Dirichlet Laplacian in ¥. After some
computations we obtain

_9\2
/ |Vu|?de = V2| Vw|?dx + ((n) + ul(E)) V2w de.
@ @ 2 @

As usual we denote by Wy*(€1;%?) the closure of C2°(%;) under the norm

2| Vw|*dx + / Yrwide.

61 61

It is easily seen that inequality (69) under the change of variables (70) is equivalent to

V2 Vw|dz > c/ Vprwdide,  we W6 0?).

€1 %61

The analogues of Theorems 10 and 11 read as follows:

Theorem 16. Let V € A(%1) and suppose that b is the best constant for the inequality
V| Vw|?de > b | Vyrewide, w e Wy 2 (61;4%). (71)
<g1 <g1

If in addition b < C°(V') then the best constant b in (71) is realized by a function wy € Wy(€1;4?). In
particular the best constant b is realized if the potential V is subcritical.

Theorem 17. Let V' be a non-negative potential in A(%).
(a) Let b > 0 be the best constant in the following inequality

_ 2
/ Vul?de > ((”2) +u1(z)>/ 2dm+b Vildr, ueCX(%) . (72)
& 2 |z &

If in addition b < C°(V) then the potential [("?_2) + 1 ()] |z 72 + bV () is a mazimal potential, that is
inequality (72) cannot be improved by adding a non-negative potential W in the RHS.
(b) If V is a subcritical potential then there exists a best constant b > 0 such that (72) is true. Moreover the

potential [("7_2)2 + 1 (2)]|z| 72 4+ bV () is a mazimal potential.

The proofs of these theorems are quite similar and slightly simpler to the proofs of of Theorems 10 and
11.

In analogy to the results of Section 6 we have similar theorems for the improved Hardy inequality involving
logarithmic corrections. In particular we have

Definition 7. A non-negative potential V € L{;/f( ¢\ {0}) is called m—admissible if there exists ¢ > 0 such
that for w € C°(%1), there holds

[& |Vul*dz > <<n;2)2+m(2)>[g et Z/ R Xde+c[fl Vulde . (73)

We denote by A,,,(%1) the class of all m—admissible potentials.
Given V € A,,(%1) and r € (0,1) we define

_9)\2 2 m 2
s (V) e fsaﬁ [Vul*dz — ((n22) + N1(2)> f% ﬂﬁdm - iz’i:1 f% &?X% o XPda
‘mr = in

ueC (€,) f% Vuldx

and
CO

m

(V)= lim Cp, (V).

r—0+4
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Definition 8. We say that the potential V € A, (1) is m-subcritical if C3,(V) = +oo.

m

Changing variables by

LX) = (@)l

inequality (73) is equivalent to

; V2| Vw|?d > c[g ViR wide,  we Wyl(6r;92,).

Now the analogues of Theorems 14 and 15 are as follows

Theorem 18. Let V € A,,(%1) and let b, be the best constant for the inequality

[g w72n|Vw|2da: > by, . Vz/)glwzdx, w e W&’Q(Q;wfn), (74)

If in addition b, < CO,(V) then the best constant by, in (74) is realized in Wy > (61;42,). In particular the
best constant by, is realized if the potential V' is m—subcritical.

Theorem 19. Let V' be a non-negative potential in A,,(%1).
(a) Let by, > 0 be the best constant in the following inequality

/ IVu|2d >((”2)2+ (2))/ “ +1i/ Y2 XPdr 4 b Vuld (75)
ul“dr > o —=dr + — —=X7... X dz u“dz,

% 2 @ |z? 4 Jo a2 ' " Je

where v € C(61).

If in addition b,, < CS (V) then the potential [("7*2)2 +p(X) + 230 XE X |22 4 bV () s a
maximal potential, that is inequality (75) cannot be improved by adding a non-negative potential W in the
RHS.

(b) If V is a subcritical potential then there exists a best constant by, > 0 such that (75) is true. Moreover

the potential [("772)2 +m(E) + 1 XT . X272 + bV () is a mazimal potential.

Remark. All the above results involve a single point singularity on the boundary. Similar results however
can be obtained when there are multiple singularities. For instance we have the following result

Theorem 20. Assume that Q C R™, n > 3, is a bounded domain that satisfies an exterior ball condition at
each of the points ay,...,am € 0. Then there exist a positive constant ¢ = c¢(n,m) depending only on n
and m and a positive constant A such that

n—2

A/u2dx+/ \Vul2dz > ”Qi/ uzdm—i—c(/ |u\%de) g ue C®(Q)
Q Q T4 o |z —af? Q ) ‘ 7

where

m 2n—2 _
W=W():= | | X" (LDGH), and D := ,nax 51618 |z — ag| .
k=1 T

The proof uses ideas that we have used so far in connection with standard partition of unity arguments; we
omit further details.
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